

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Northeast Metrology, Inc.

140 Industrial Drive East Longmeadow, MA 01028

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 15 February 2027 Certificate Number: AC-1519

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002)

Northeast Metrology, Inc.

140 Industrial Drive
East Longmeadow, MA 01028
Mark Kuehl 413-525-1502

CALIBRATION

Valid to: February 15, 2027 Certificate Number: AC-1519

Length – Dimensional Metrology

Version 012 Issued: February 14, 2025

	- 87		
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks ²	Up to 4 in (5 to 20) in	$(1.8 + 3L) \mu in$ $(3 + 3.2L) \mu in$	Comparison to Gage Blocks
Regular and Thread Micrometer Standards ²	(1 to 20) in (21 to 72) in	$(1 + 3.7L) \mu in$ (130 + 3.5L) μin	Comparison to Universal Measuring Machine (UMM), Gage Blocks
Flute, O.D., Depth, Interchangeable-Anvil Micrometers ^{1,2}	Up to 72 in	$(100 + 4.2L) \mu in$	Comparison to Gage Blocks
Calipers ^{1,2} (Dial, Digital, Vernier)	Up to 120 in	(570 + 1.4 <i>L</i>) μin	Comparison to Gage Blocks, Ring Gage
Pitch/Gear Wire Sets (Up to 130 TPI)	Up to 0.25 in	14 μin	Comparison to UMM, Pin Gages
Thread Plugs ² Pitch Diameter	Up to 12 in	(66 + 2.6 <i>L</i>) μin	Comparison to UMM, Gage Blocks,
Major Diameter	Up to 12 in	$(27 + 3.2L) \mu in$	Pitch Wires
Thread Rings ^{2,3} Pitch Diameter	Up to 6 in	$(90 + 2.8L) \mu in$	Comparison to Master Thread Plugs
Minor Diameter	Up to 6 in	$(630 + 1.3L) \mu in$	1123001 1111044 11450

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Plain Plugs/Discs ²	(0.005 to 12) in	(9 + 3.9 <i>L</i>) μin	Comparison to UMM, Gage Blocks
Plain Ring Gages ²	(0.04 to 10) in	(8 + 4 <i>L</i>) μin	Comparison to Ring/Disc Comparator, Gage Blocks
Electronic, Dial, Test Indicators ^{1,2}	(0.000 05 to 4) in	$(39 + 3.5L) \mu in$	Comparison to Indicator Calibrator
Height Gages ^{1,2}	Up to 24 in	$(123 + 3.5L) \mu in$	Comparison to Gage Blocks, Surface Plate
Pin Gages ²	(0.011 to 1) in	(15 + 5.6 <i>L</i>) μin	Comparison to UMM, Reference Pin Gages, Laser Micrometer

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- L =length in inches.
- Only the Minor Diameter measurement is measured and Accredited. The Thread Set Plug is utilized is for tactical fit. If the ring gage does not fit correctly, it is then adjusted to the Thread Set Plug and the Minor Diameter will be rechecked. If proper drag is felt, if it is loose, or if it is tight, it will be checked on the certificate.
- Unless otherwise specified in the far-right column, the calibration procedure/method was internally written.
- This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1519.

Jason Stine, Vice President

Version 012 Issued: February 14, 2025

